#
Network Flow Pt.2
#
With discontinuous cost function
In the previous network flow model, the cost of an edge is linear:
\text{Cost of arc }i\to j = c_{ij}x_{ij}
Suppose now there’s a starting price d_{ij} to send any amount of flow on arc i\to j.
Let non-negative x_{ij} be the flow of i\to j.
We can model the initial cost with an indicator variable y_{ij}.
y_{ij} = \begin{cases} 1 & \text{if need to pay to send flow on }i\to j\\ 0 & \text{otherwise} \end{cases}
The total cost/objective function becomes:
\min\sum_{(i\to j)\in A}c_{ij}x_{ij} + \sum_{(i\to j)\in A}d_{ij}y_{ij}